jump to navigation

Temboo — aquaponic “HELLO WORLD” equivalent June 1, 2015

Posted by rik94566 in agponics.com, aquaponic automation, aquaponics, aquaponics electronics, Balcony aquaponics, internet of farming, Internet-of-Farming, rik94566.
Tags: , , , , , , , ,
add a comment

With the help of Temboo – my aquaponic Balcony Unit generated its first TEXT Message:

SMS

MESSAGE IS:

aquaponic Balcony Unit grow bed now filling.

Technology is complicated — May 8, 2015

Posted by rik94566 in Controlled Environment Agriculture, DIY aquaponics, Electronic Componets, indoor aquaponics, IoT aquaponics, Temperature Probe.
Tags: , , , , , , , , , , ,
add a comment

I say this because I will be displaying my aquaponic – IoT – Balcony Unit  at Maker Faire next week in San Mateo.  To accomplish the IoT part of the build I have to use technology that allows for internet communication thus IoT!  Well there are many options available to accomplish this task – some not so easy and others not enough features to be effective for this project.

So my choice in this case is the Arduino YUN —

arduino yun

I made this choice because I had one (but had not used it as yet) and the fact that documentation on it is easy to find.  The other fact is that Temboo www.temboo.com uses the YUN as one of its options for their solution to the Internet of Things and I am working with them on this open source project so many others will be able to get up and running in short order and have simpler options to add additional capability based on the persons needs and I will not have to supply the customer support for any aspect of the code other than give everyone a stating point.
WELL –  that is where things got interesting.

Had to work through getting the YUN on the network of choice.  Not a big deal but it took some time and many attempts to get it dialed in because the Arduino instructions tell you to go to arduino.local to find the individual unit.  Well this only works about 60% of the time.  So the solution is to use the IP address of 192.168.24.1 now I could configure the thing to my liking.  Once configured it would not show up in the Arduino IDE at all.  Major issue for me as I had no idea if the unit configured or not.  I finally when on to my wireless router to see if the board was being recognized.  Had to dig out all the USER ID and PASSWORD info and then work through all the menus to determine what in fact was connected to the router.  There is was — YEA

Now I had to research out why it was not listed as a port option in my Arduino IDE.  Well after some time and deep research I found that Arduino IDE only works some times for the YUN on wireless.  So the uploading from Arudino IDE to the board is not an option as most of the YouTube videos demonstrate quite well.  This becomes an issue because I found out that as configured the YUN does not have enough on board memory, so a SD card is needed.

Using an SD card with the YUN requires that the card be format using the YUN.  To do that you need to know that the YUN is connected to the internet and working properly which is very hard to know if it is or not.

So once you know the YUN is connected and you have it connected through cable to your computer you need a file called ” YunDiskSpaceExpander” found on the Arduino site.  Once uploaded you access it through the Serial Monitor of the Arduino IDE.  If all goes well you answer a bunch of cryptic questions and bingo the thing kicks off.  Once do you have a formated YUN SD enabled board.

Now I am ready for the real fun stuff to generate code to be used through Temboo so I will have “Streaming Data” and text messaging in short order – lets hope!

The good news in all of this is that I will be documenting all of this for the instructions to the Balcony unit for all to use and save anyone interested in building one or gets a kit from me that will be up and running in short order.

See you all at Maker Faire next Saturday if you make it there!

aquaponic- IoT device — Balcony Garden March 10, 2015

Posted by rik94566 in aquaponic automation, aquaponics, Balcony aquaponics, Controlled Environment Agriculture, DS18B20.
Tags: , , , , ,
add a comment

system view -1

aquaponic-IoT device — Balcony Garden

BALCONY AQUAPONIC GARDEN – IoT READY- DIY  or purchase materials locally and build —  by rik kretzinger

With all the interest around the world in aquaponics there are a number of creative units being developed for small spaces.  Many if not most of these solution do not address a number of issues that cause these units to end up on Craig’s List or in the trash at the end of the day. None of these solutions even address the automation aspect of aquaponics to take the stress out of operating a small unit effectively at an affordable price point and can be assembled safely by anyone interested in aquaponics.
 
AUTOMATION COMPONENTS:
1 – DHT-22 – Humidity and Temperature
2 – DS18B20 – 1 wire Temperature probes  (grow-bed and fish tank)
1 – Analog Float Switch in Fish Tank for water level tracking
1 – Analog Water Sensing Probe in grow bed for tracking water level and timing of cycles
4 – Relay Controlled outlets
1 – Master System Kill Relay – should anything go wrong with the unit
1 – Stainless Steel gravity feed Valve N/O – allows for precise control of cycle times and water level control in grow bed,
 
BALCONY GARDEN KIT FEATURE SET:
27 gallon fish tank
27 gallon grow bed – this allows for the aquaponic standard of 1:1 ratio of water to grow bed volumes be maintained for a healthy system
DIY Solids Filtration unit – allows for solid wast capture or removal and reuse in system
DIY Bio-Filter reactor – converts toxic fish waste to non-toxic plant fertilizer using moving bed media (big system component not found in any small systems)
Overflow Preventer – will not let any water to escape from your grow bed should you encounter a system problem
Root Clogging Preventer Mechanism  –  this is the problem no one talks about in aquaponics – roots clog everything – unless you plan for the problem
System power down – should a power failure occur
Air supply back-up for fish tank – should power failure occur
Plug-N-Play construction of kit
Once assembled and cycled easy to maintain.
Starter water – bacteria rich and ready to jump-start your system provided with the kit
Small footprint – big results
High percentage of materials can be locally sourced at a big box store and rest at Amazon if you want to do-it-yourself (DIY)
System allows for a high degree of control of the flood and drain cycles depending on what you are growing and environmental demands
Allows for expansion of sensor set and moving to solar back-up option in the future
Unit can be converted to off-grid applications easily – will require a different power configuration of components and equipment
Starting code for system on which ever micro-controller platform a person would like to use
system view -2
system view - 3

TOWER SYSTEM – set-up at Maker Faire 2014 May 22, 2014

Posted by rik94566 in adafruit, agponics.com, arduino, DIY aquaponics, DS18B20, Electronic Componets, indoor aquaponics, indoor gardens, indoor growing, Internet-of-Farming, IoT aquaponics, One-wire, Raspberry PI, Tower System, Tower Tubes.
Tags: , , , , , , , , , ,
2 comments

Maker Faire - 2014

EDITOR’S CHOICE – not once – but 3 times @ Maker Faire – WOW May 21, 2014

Posted by rik94566 in agponics.com, aquaponic automation, aquaponics, aquaponics electronics, arduino, DIY aquaponics, indoor aquaponics, indoor gardens, indoor growing, Internet-of-Farming, IoT aquaponics, Raspberry PI, sensor, Tower System.
Tags: , , , , , ,
2 comments

Very few displays achieve 3 EDITOR CHOICE AWARDS —

MAKER FAIRE - AWARD

RADIAL FLOW FILTER – just completed April 2, 2014

Posted by rik94566 in agponics.com, aquaponic automation, aquaponics, aquaponics electronics, Controlled Environment Agriculture, DIY aquaponics, Electronic Componets, indoor aquaponics, Internet-of-Farming, IoT aquaponics, PRODUCTS, radial flow filter, Tower System.
Tags: , , , , , , ,
add a comment

IMG_1365Since first conceiving of the Tower unit as a concept I knew they needed to be operated differently than DWC and Media bed in how you deal with the solids from the fish.  Media beds —  it has not been that big a deal for me because my rule is that any tank size smaller than 350 I filter the water and break-up the solids and then put back into solution by pumping back into the grow beds.  This way I lose no nutrients that the fish produce.  Has worked well for over 3 years now.  In the testing that I have done with the towers I found that solids need to be dealt with or things will plug up.  I still will be reintroducing the broken up solids back into the system put it will take place downstream of the bio-filter component and re-injected into the new buffer tank that stabilizes fish tank water volume and height.  This all came out of research I was doing on how best to handle solids in aquaponics.  As designed this radial flow filter can handle up to and maybe a bit more than a 1000 gallons of fish tank water.  The only thing left to figure out on this radial flow filter now is where I will be locating the outlet for the clean water.  That will be dependent on fish tank water level.  Should have fish tank completed this coming weekend and make the determination on this aspect of the build.

I put together a youtube slide show if you want to see more detail of the radial flow filter:

agponic – MD — air supply feature March 1, 2014

Posted by rik94566 in agponic MD, agponicMD, agponics.com, aquaponic automation, aquaponics, aquaponics electronics, DIY aquaponics, indoor aquaponics, IoT aquaponics, plumbing, PRODUCTS.
Tags: , , , ,
add a comment

A lot of aquaponic systems use air pumps.  So what is a aquaponic automation simulator without a air pump!  Here is how it is handled and how it is connected up.  This air pump comes standard on all the versions.  The extra air line is for the planned 12V back-up configuration that is part of the pro version.  Well underway on that unit and will have details soon.

air supply - MD

Media Question – asked on youtube video comment section March 1, 2014

Posted by rik94566 in agponics.com, aquaponic automation, aquaponics, DIY aquaponics, Internet-of-Farming, IoT aquaponics.
Tags: , , , , ,
add a comment

Here is a question that was asked:

media

media - 2

www.carriots.com — new option in the IoT world of automation February 4, 2014

Posted by rik94566 in agponics.com, aquaponic automation, aquaponics, aquaponics electronics, arduino, Carriots, DIY aquaponics, Internet-of-Farming, IoT aquaponics.
Tags: , , , , , ,
2 comments

Last week I was very charged up about the blog posting by Home Automation.  It was not that the work they were talking about was that outstanding, it was more about the API he was using called CARRIOTS.  It can be found at http://www.carriots.com.  There have been a number of similar type products hitting the market place recently by a number of different organizations and companies.  What I found most impressive with this was the fact that it was very straight forward and well documented with a clear pricing structure that was affordable for hackers.  The better news is that they have tech support as part of the reason they are in business.  Even better is that with this product it can be used in place of two products (APduino & Xively) because it has features that are found in both the other two services like “RULES”. Can’t wait to see what we all can do with a easy to use and less resource intensive API.

Check out this tutorial:

https://www.carriots.com/tutorials/Arduino_RPi_Carriots/flowmeter

Here is a cool project that will help you see what can be done with this service:

carriots - beer

agponic-MD — features defined February 4, 2014

Posted by rik94566 in 1-wire, agponic MD, agponicMD, agponics.com, aquaponic automation, aquaponics, aquaponics electronics, DIY aquaponics, DS18B20, indoor aquaponics, indoor growing, Internet-of-Farming, IoT aquaponics, One-wire, PRODUCTS, Stainless Steel Temp Probe, Temperature Probe.
Tags: , , , , , , , , ,
2 comments

Now that the basic agponic-MD unit is completed – I am working through all the different features that can be found on the unit and define there functions.

Here is one side of the connection box at the back of the unit.

pH - power side